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Abstract. The dynamic response of the ZGB surface reaction lattice gas model, for the catalyzed reaction
A + (1/2)B2 → AB, is studied by means of Monte-Carlo simulations in the neighborhood of its second
order irreversible phase transition (IPT). It is found that shortly after driving a stationary configuration
into the absorbing state, the relaxation of the system can be well described by a stretched exponential
behavior. The dependence of the relaxation characteristic time and the induced changes on the coverage
of the reactants, on both, the intensity and the period of the pulsed perturbation, are systematically
investigated. The obtained insights can straightforwardly be extended to a wide variety of irreversible
systems exhibiting second order IPT’s, such as directed percolation, forest fire models, the contact process,
branching annihilating walkers, catalyzed reactions, etc.

PACS. 02.50.Ey Stochastic processes – 82.65.Jv Heterogeneous catalysis at surfaces – 89.90.+n Other
areas of general interest to physicists

1 Introduction

The dynamic response to an external perturbation of
model systems close to reversible phase transitions, has
recently been studied extensively [1–7]. The archetype
model for such studies is the well-known Ising magnet.
The dynamical response of Ising systems to an oscilla-
tory magnetic field has led to the discovery of inter-
esting phenomena such as dynamic hysteresis [1] and
a fluctuation-induced symmetry breaking transition [6].
Also the anomalous behavior of the pulsed susceptibility
has been reported. Very recently, the dynamic response
of an Ising system to a pulsed magnetic field has been
studied by means of Monte-Carlo simulations and solving
numerically the mean-field equation of motion [7]. Also,
the nonexponential relaxation of the fully frustrated Ising
model has been reported very recently [5]. Within this
context, one should also mention interesting experimental
observations of the dynamic scaling behavior of the mag-
netic hysteresis in thin ferromagnetic Fe/Au(001) films [8].

So far, the study of the dynamic response of an intrinsi-
cally irreversible system close to irreversible phase transi-
tions (IPT’s) has not been addressed yet. IPT’s between a
reactive (or active) regime and an inactive (or absorbing)
state have been reported in a wide variety of model sys-
tems, e.g. directed percolation [9], the contact process [10],
branching annihilating walkers [11], forest fire models [12],
models of the dynamic evolution of living individuals [13]
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and more significantly in irreversible reaction systems [14]
(for reviews see e.g. [15,16]).

One of the better known irreversible reaction system
is the dimer-monomer ZGB model, as earlier proposed
by Ziff, Gulari and Barshad [14]. The ZGB model deals
with a catalyzed lattice-gas monomer-dimer reaction of
the type A + (1/2)B2 → AB. Reactant’s A and B2 are
adsorbed on the surface of the catalyst; i.e. according to
the Langmuir-Hinshelwood mechanism; with probabilities
YA and YB, respectively. Taking YA + YB = 1, the ZGB
model has a single parameter; namely YA; which plays
the role of an external pressure due to the reactants in
the gas phase in contact with the surface. For YA → 1
(YA → 0) the surface of the catalyst becomes inactive due
to complete saturation with A- (B-)species, respectively.
However, between these two inactive states there is a reac-
tive regime as it is shown in Figure 1. More precisely, for
YA ≤ YA1

∼= 0.3906 the final state of the system is a cat-
alyst’s surface fully covered (or poisoned) with B-species.
Similarly, for YA ≥ YA2

∼= 0.5256 the surface becomes
poisoned by A-species. IPT’s between the reactive regime
and the B- (A-)poisoned states are of second (first) order,
respectively, as it can be observed in Figure 1. For more
details on the ZGB model see e.g. [14,15].

Within this context, the aim of this work is to in-
vestigate the dynamic response of the ZGB model, close
to the second order IPT, to a pulsed perturbation of
the external pressure. The understanding of this physical
situation may straightforwardly be generalized to other
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Fig. 1. Plots of the rate of AB production (RAB) and the
surface coverage with A (θA) and B (θB) species versus YA, for
the ZGB model.

systems exhibiting second order IPT’s such as forest fire
models, the contact process, branching annihilating walk-
ers, and many others irreversible reaction systems [15].
Also, the irreversible second order transitions exhibited by
these systems have extensively been studied using a vari-
ety of theoretical approaches [9,17–20]. The main finding
is that such kind of IPT belongs to the universality class
of directed percolation [17] and therefore it is very well
understood from the theoretical point of view [9]. Fur-
thermore, the approach proposed in this work is the natu-
ral previous step for further investigations of the dynamic
response of irreversible systems to more complex pertur-
bations. It should be noticed that this field remains un-
explored, so we have restricted ourselves to present and
discuss numerical results which are aimed to gain the first
insight on the field and to stimulate further theoretical
work. Also, this kind of study has motivations in the field
of applied catalysis since, in some cases, oscillatory vari-
ations of the external pressure may enhance the rate of
production of catalyzed reactions [21,22].

2 Description of the ZGB model
and the simulation technique

In order to simulate the ZGB model we have used a square
lattice of side L = 512 with periodic boundary conditions
to represent the catalytic surface. The Monte-Carlo algo-
rithm for the simulation is as follows: (i) A or B2 molecules
are selected randomly with relative probabilities YA and
YB = 1−YA, respectively. These probabilities are the rela-
tive impingement rates of both species, which are propor-
tional to their partial pressures. Due to the normalization,
YA + YB = 1, we used YA as a parameter. If the selected
species is A, one surface site is selected at random, and
if that site is vacant, A is adsorbed on it. Otherwise, if
that site is occupied, the trial ends and a new molecule
is selected. If the selected species is B2, a pair of nearest

Fig. 2. Plots of the rate of AB production ((5, RAB); the
surface coverage with A (•, θA) and B (5, θB) species versus t,
obtained when the shown pulse (�) is applied. The employed
parameters are ∆p = 0.10, τp = 20 MCTs and YAw = 0.46.
More details in the text.

neighbor sites is selected at random and the dimer be-
comes adsorbed only if they are both vacant. (ii) After
each adsorption event, the nearest neighbors sites of the
added molecule are examined in order to account for the
reaction. If more than one [B(a),A(a)] pair is identified,
a single one is selected at random and removed from the
surface.

The Monte-Carlo time step (MCTs) (t) involves L2

trials, so each site of the lattice is visited once, on aver-
age, during each time unit. Simulations are started with
empty lattices taking a fixed working value (YAw) for the
parameter of the model. YAw is always selected within the
reactive regime of the system. The first 104 time steps are
disregarded in order to allow the establishment of a sta-
tionary state and then the perturbation is switched on,
that is rectangular pulse of intensity ∆p is applied dur-
ing a period of time τp. So, during the operation of the
perturbation the actual value of the tunable parameter is
Y ∗A = YAw − ∆p. Notice that if Y ∗A < YA1

∼= 0.3906 the
system is driven to the B-poisoned state (see Fig. 1) and
therefore one may expect the surface to become saturated
by B-species if the period of the pulse is long enough.

Just after the application of the pulse and subse-
quently, several quantities of interest; e.g. the coverages
with A- and B-species given by θA and θB, and the rate of
AB production RAB, respectively; are recorded as a func-
tion of time. All these quantities are averaged over 103

different realizations.

3 Results and discussion

Figure 2 shows a typical response of the reaction sys-
tem to a pulsed external perturbation. The initial starting
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Fig. 3. Typical relaxation curves of θB versus t. (a) is obtained
using YAw = 0.4600, ∆p = 0.10 and τp = 20 MCTs. (b) as in
(a) but taking YAw = 0.4175, ∆p = 0.10 and τp = 20 MCTs.
More details in the text.

pressure is YAw = 0.4600 and the parameters charac-
terizing the pulse are τp = 20 MCTs and ∆p = 0.10.
So, in this example the system is shortly driven into the
B-poisoned state with Y ∗A = 0.3600. Consequently the cov-
erage with B-species increases in contrast to the behavior
of both the coverage with A-species and the rate of re-
action. After suppression of the pulse the system quickly
relaxes towards the stationary state at YAw. Unless other-
wise stated, we will focus our attention to the relaxation
properties of the B-species because, on the one hand, all
measured quantities relax showing the same behavior and,
on the other hand, θB exhibits the best signal/noise ratio.

Figures 3a and 3b show two typical relaxation curves
of θB. The first one (Fig. 3a), is taken for YAw = 0.4600,
i.e. well inside the reactive regime, while Y ∗A = 0.3600 is
rather close to the critical edge given by YA1

∼= 0.3906. In
the second example (Fig. 3b, we have taken YAw = 0.4175
close to the critical edge so the system has been driven
deeply into the poisoned state with Y ∗A = 0.3175. It is
found that the relaxation of the coverage can be very well

fitted by a stretched exponential curve of the form

θB(t) = θBmax exp[−(t/τB)b] + θ∞, (1)

where θBmax is the maximum value of the coverage with
B-species which is just achieved when the peak is sup-
pressed, θ∞ is the coverage after proper relaxation; i.e.
the same coverage as in the stationary state at YAw; τB is
the characteristic relaxation time and b is the stretching
exponent of the stretched exponential curve. For the case
of Figure 3a we have obtained τB ∼= 15.23±0.02< τp = 20
and b ∼= 0.963± 0.003. Similarly, for the case of Figure 3b
one has τB ∼= 35.93±0.05> τp = 20 and b ∼= 0.862±0.002.

The relaxation time in the case of Figure 3b is longer
that for the example of Figure 3a. This is due to the fact
that in the former the system has been driven deeper into
the poisoned state. However, this preliminary result has
to be taken with caution because in the limit Y ∗A → 0
a different behavior is observed, as it will be discussed
below.

It should be noted that the conditions under which
stretched exponential behavior occurs in physical systems
are controversial and of current interest. In many cases
it is very difficult to distinguish an stretched exponen-
tial from simple exponential or even power law behavior
(for an excellent discussion on this issue see e.g. [23]).
In the examples of Figure 3 the stretching exponents b
are close to unity, causing further difficulties in the iden-
tification of the actual behavior. So, in order to sup-
port the validity of our claim, let us define the function
X(t) = [θB(t)−θ∞]/θBmax (see Eq. (1)). So, in the asymp-
totic regime (t→∞), at least one of the following behav-
ior may hold: (i) if log[X(t)/X(t+1)] vs. t decays and goes
to zero one has an stretched exponential. (ii) However, if
the same plot approaches a positive decay constant one
has a simple exponential. Finally, (iii) if a log-log plot of
[X(t)/X(t+1)] vs. t/(t+1) shows a lineal decay with slope
α < 0 the behavior corresponds to a power law (expo-
nent α) multiplied by a simple exponential decay. Figure 4
shows a plot of log[X(t)/X(t+ 1)] vs. t for the relaxation
of θB after the application of a pulse with τp = 15 MCTs,
∆p = 0.10 and YAw = 0.3925. In this example the data is
averaged over 104 different configurations in order to im-
prove the signal/noise ratio, since X(t)/X(t+ 1) is quite
sensitive to small fluctuations of the stochastic system.
The observed behavior of the data (full dots) strongly
supports the stretched exponential decay which can be fol-
lowed as far as t = 150 MCTs > τp = 14 MCTs. The hori-
zontal straight line (triangles) corresponds to the expected
simple exponential behavior which is far from the obtained
data. The inset shows that a log-log plot of [X(t)/X(t+1)]
vs. t/(t + 1) exhibits pronounced curvature, so behavior
(iii) can also be disregarded. For the example of Figure 4
we obtain b ' 0.65, so as in the examples shown in Fig-
ure 3, the stretched exponent in close to unity. Increasing
the period of the pulse b also increases and it becomes al-
most impossible to distinguish the type of decay, e.g. for
τp > 45 MCTs.
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Fig. 4. (•) Plot of log [X(t)/X(t+ 1)] vs. t (for the definition
of X(t) see the text). Data taken for the relaxation of the
system with τp = 15 MCTs, YAw = 0.3925 and ∆p = 0.10. The
horizontal line (5) shows the behavior that would be obtained
for a simple exponential decay. The insert shows a log-log plot
of [X(t)/X(t + 1)] vs. t/(t+ 1). More details in the text.

In the following paragraphs we would like to present a
systematic numerical study of the dependence of the rele-
vant quantities which characterize the relaxation process;
namely θBmax and τB; on the parameters of the applied
pulse; namely ∆p and τp.

Let us first discuss results obtained applying differ-
ent pulses to stationary configurations generated within
the reactive regime with YAw = 0.3925; i.e. rather close
to the second order critical threshold. For this value of
the parameter the average coverage with B-species is close
to θ∞ ∼= 0.9002 ± 0.0005. Figures 5a and 5b show plots
of the dependence of τB and ∆θBmax on ∆p, respec-
tively. For peaks of very small amplitude, more exactly
for ∆p < 0.002, one has that Y ∗A = YAw −∆p lies within
the reactive regime and the relaxation time is expected
to remain almost unchanged, as observed in Figure 5a.
However, τB also remains constant even after driving the
system deep in the absorbing state increasing the peak
intensity up to ∆p < 0.1. This observation is in contrast
with the monotonic increment of ∆θBmax which can be
very well fitted by a power law behavior of the form

∆θBmax ∝ ∆p
z, (2)

with z ∼= 0.92 ± 0.02, for ∆p < 0.1. Within the inter-
val 0.1 < ∆p < 0.25 the surface becomes almost satu-
rated with B-species; i.e. θ∞ +∆θBmax ∼ 1; however full
saturation is not observed because the poisoning kinetics
is delayed by the requirement of two neighboring empty
sites for adsorption of B2-species. In fact, the mechanism
for the generation of such kind of pairs is provided by
A-adsorption and subsequent reaction which is heavily af-
fected by the low partial pressure of A-species. Further-
more, the mechanism is almost suppressed for YA → 0 and
one observes a slight decay in ∆θBmax (see Fig. 5b). Simul-
taneously with this decay a drastic drop of the relaxation

Fig. 5. (a) and (b) show plots of the dependence of τB and
∆θBmax on ∆p obtained for YAw = 0.3925, respectively. In (b)
the slope of the straight line is z = 0.92 (for ∆p < 0.1), and
has been drawn for comparison.

time is observed (see Fig. 5a). This behavior can be ratio-
nalized as follows: in the limit YA → 0 most empty sites
on the surface are single sites because, on the one hand,
these sites can not be occupied by the majority species in
the gas phase; i.e. B2-dimers; and on the other hand, the
generation of pairs of empty sites is quite inefficient since
A-monomers is the minority species in the gas phase. Due
to the presence of these single sites ∆θBmax has to drop
slightly. After removal of the pulse, back to YAw, single
sites are quickly occupied by A-monomers which imme-
diately react with neighboring B-species generating addi-
tional empty sites in a sort of chain-reaction. This process
causes a drastic drop of τB (Fig. 5a) and the relaxation of
the system is faster.

Another approach to the study of the relaxation pro-
cess for a fixed value of YAw is to apply pulses of the same
intensity but different period, as it is shown in Figure 6.
The dependence of both τB (Fig. 6a) and ∆θBmax (Fig. 6b)
on τp can be described by a power law behavior, that is

τB ∝ τ
x
p (3)
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Fig. 6. Plots of the dependence of both τB (a) and ∆θBmax

(b) on τp, respectively. Results obtained keeping fixed YAw =
0.3925 and ∆p = 0.10. In (a) [(b)] the straight line has
slope x = 1.1 [y = 0.5] and has been drawn for comparison,
respectively.

and

∆θBmax ∝ τ
y
p , (4)

with x = 1.11± 0.03 and y = 0.52 ± 0.02. So, equations
(2) and (4) suggest that, in the limit ∆p→ 0 and τp → 0
the dependence of ∆θBmax on the parameters of the pulse
may be well described by the following approach

∆θBmax ∝ ∆p
zτyp
∼= ∆p

√
τp. (5)

Furthermore, the plateau exhibited by τB in Figure 5a and
equation (3) suggest that

τB ∝ τp, (6)

independent of ∆p, for ∆p→ 0 and τp → 0.

The relaxation of the system for fixed parameters
of the applied pulse but different values of the station-

Fig. 7. (a) and (b) are plots of τB and ∆θBmax versus ∆YA =
YAw − YA1 obtained for pulses with amplitude ∆p = 0.10 and
different periods and lattices sides: τp = 20, (•) L = 128, (◦)
L = 256 and (5) L = 512; τp = 50, (H) L = 512; τp = 100,
(�) L = 512; and τ = 200, (�) L = 512.

ary pressure YAw (within the range YA1 < YAw <
YA2) has also been studied. Figure 7a shows plots of τB
versus ∆YA = YAw − YA1 obtained for pulses with ampli-
tude ∆p = 0.10 and different periods. For short periods,
namely τp ≤ 100, the relaxation is slow close to criticality
showing a plateau, however increasing ∆YA and approach-
ing YA2 the relaxation becomes faster and almost indepen-
dent of ∆YA close to the first order irreversible phase tran-
sition. Also, as it is shown in Figure 7, finite size effects are
irrelevant, at least for the side of the used lattices, namely
128 ≤ L ≤ 512. For larger periods, e.g. τp ≥ 200 and close
to the second order transition (∆YA → 0), the system
becomes irreversibly saturated with B-species. Therefore,
one has an irreversible phase transition between an active
regime with AB-production and an absorbing (inactive)
state which is dynamically driven by the external param-
eter. The detailed study of this interesting phenomena is
beyond the aim of the present work and will be addressed
in forthcoming publications [24,25]. Also, Figure 7b shows
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plots of ∆θBmax versus ∆YA and the observed behavior
is consistent with the results shown in Figure 7b. These
findings can be rationalized as follows: close to the sec-
ond order IPT (∆YA → 0) the coverage with B-species is
close to unity (see e.g. Fig. 1) and the pulse drives the
system into the absorbing state for a certain period caus-
ing a relatively small increment of θB (Fig. 7b) which be-
comes close to saturation. Consequently, when the system
is driven back to the active regime with YAw close to YA1,
the relaxation is very slow (Fig. 7a). In contrast, far from
the IPT at YA1 (∆YA → YA2 − YA1), the coverage with
b-species decreases (Fig. 1) and greater changes of θB are
possible, even if the system is not driven into the absorb-
ing state as it happens for ∆YA ≥ 0.10. In this case the
relaxation becomes faster because YAw is close to YA2 and
the higher pressure of A-species allows a quick evolution
into the stationary state.

4 Conclusions

A numerical study on the dynamic response of the ZGB
surface reaction lattice gas model is presented. The reac-
tion system, under stationary conditions, is shortly drive
into the absorbing state and subsequently, the relaxation
process back to the initial state is studied by means of
Monte-Carlo simulations. After the application of short
pulses, the relaxation process can be well described by
a stretched exponential behavior. The dependence of the
relaxation characteristic time and the induced changes on
the coverage of the reactants, on both, the intensity and
the period of the pulsed perturbation, are systematically
investigated. A novel irreversible transition driven by a
pulsed variation of the external parameter is identified.
The obtained results can straightforwardly be extended to
a wide variety of irreversible systems exhibiting second or-
der IPT’s, such as directed percolation, forest fire models,
the contact process, branching annihilating walkers, cat-
alyzed reactions, etc. So, we expects that these numerical
results may stimulate theoretical studies on the dynamic
response of irreversible systems. In contrast to the case of
reversible systems, this field remains unexplored.
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